Let
\[y=a^{x},\qquad a>0.\tag{a}\]
Taking the natural logarithm (= logarithm to the base $e$) of both sides, we get
\[\ln y=x\ln a\]
or
\[\begin{aligned} x & =\frac{\ln y}{\ln a}\\
& =\frac{1}{\ln a}\ln y.
\end{aligned}\]
Differentiating with respect to \(y\), we get
\[\frac{dx}{dy}=\frac{1}{\ln a}\cdot\frac{1}{y}.\tag{b}\]
It follows from the Derivative Rule for Inverses that
\[\frac{dy}{dx}=\ln a\cdot y\] or \[\frac{dy}{dx}=\ln a\cdot a^{x}.\] Hence, \[ \bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}a^{x}=\ln a\cdot a^{x}.\tag{c}}\] When \(a=e\), \(\ln a=\ln e=1\), and the formula becomes \[ \bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}e^{x}=e^{x}.\tag{d}}\]
Now consider \(y=u^{v}\), where \(u\) and \(v\) are functions of \(x\). To find \(y’\), we take natural logarithm of both sides:
\[\ln y=v\ln u\]
Now we can use logarithmic differentiation or write the above equation as
\[y=e^{v\ln u},\]
and then apply (d) and the chain rule:
\[\begin{aligned}
\frac{dy}{dx} & =e^{v\ln u}\frac{d}{dx}(v\ln u)\\
& =u^{v}\left[\frac{dv}{dx}\cdot\ln u+v\frac{d}{dx}\ln u\right]\\
& =u^{v}\left[\frac{dv}{dx}\ln u+v\left(\frac{d}{du}\ln u\cdot\frac{du}{dx}\right)\right]\\
& =u^{v}\left[\frac{dv}{dx}\ln u+v\left(\frac{1}{u}\cdot\frac{du}{dx}\right)\right]\\
& =\ln u\cdot u^{v}\frac{dv}{dx}+v\cdot u^{v-1}\frac{du}{dx}.\end{aligned}\]
Hence, \[ \bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}u^{v}=\ln u\cdot u^{v}\frac{dv}{dx}+v\cdot u^{v-1}\frac{du}{dx}\tag{e}}\]
The derivative of a function with a variable exponent is equal to the sum of the two results obtained by first differentiating, regarding the exponent as constant, and again differentiating regarding the function as constant.