Table of Contents
Differentiation of a Logarithm
Let \(y=\ln x\). To differentiate, we follow the steps: Step 1: \[y+\Delta y=\ln(x+\Delta x)\] Step 2: Hence Now consider \(y=\log_{a}x\). What is \(dy/dx\)? We write \[y=\log_{a}x=\frac{\ln x}{\ln a}.\] Therefore Now an important example: From the above example, we conclude \[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\ln|x|=\frac{1}{x},\tag{c}}\] More generally, if $u$ is a differentiable function of $x$ using the chain rule we have \[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\ln|u|=\frac{1}{u}\frac{du}{dx}.\tag{d}}\] To differentiate a function \(y=f(x)\) with respect to \(x\) and \(f\) composed of products, quotients, and exponents, it is sometimes easier to: Notice that if \(f(x)<0\) for some \(x\), then \(\ln f(x)\) is not defined for those values of \(x\). So to use logarithmic differentiation, we should technically start with $|y|=\left|f(x)\right|$, and then take the natural logarithm and derivative of each side. However, because the derivative of $\ln |u|$ is the same as the derivative of $\ln u$ (when $u>0$), we can ignore the fact the $\ln u$ is not defined for $u\leq 0$. Previously, we proved that the power rule \[ \bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}x^r=r x^{r-1}}\] holds for rational exponents. Now we can prove that the power rule is also correct if $r$ is any real number (rational or irrational). Show the derivation of the derivative of the natural logarithm
Hide the derivation
\[\begin{align} \Delta y & =\ln(x+\Delta x)-\ln x\\ & =\ln\left(\frac{x+\Delta x}{x}\right)\\ & =\ln\left(1+\frac{\Delta x}{x}\right)\end{align}\]
Step 3:
\[\begin{align} \frac{\Delta y}{\Delta x} & =\frac{1}{\Delta x}\ln\left(1+\frac{\Delta x}{x}\right)\\ & =\ln\left(1+\frac{\Delta x}{x}\right)^{1/\Delta x}\\ & =\frac{1}{x}\ln\left(1+\frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\end{align}\]
Dividing the logarithm by \(x\) and at the same time multiplying the exponent of the parentheses by \(x\) changes the form of the expression but not its value. That is, \(\ln u=\frac{1}{a}\ln u^{a}\).]
Step 4:
\[\begin{align} \frac{dy}{dx} & =\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}\\ & =\lim_{\Delta x\to0}\left[\frac{1}{x}\ln\left(1+\frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right]\\ & =\frac{1}{x}\lim_{\Delta x\to0}\left[\ln\left(1+\frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right]\\ & =\frac{1}{x}\ln\left[\lim_{\Delta x\to0}\left(1+\frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}\right]\\ & =\frac{1}{x}\ln e\\ & =\frac{1}{x}.\end{align}\]
[Note than when \(\Delta x\to0\), \(\frac{\Delta x}{x}\to0\). Therefore, \({\displaystyle \lim_{\Delta x\to0}\left(1+\frac{\Delta x}{x}\right)^{\frac{x}{\Delta x}}=e}\) from placing \(u=\frac{\Delta x}{x}\) in \({\displaystyle \lim_{u\to0}(1+u)^{1/u}=e}\) (see here)].
\[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\ln x=\frac{1}{x},\qquad(x>0).\tag{a}}\]
\[\begin{align} \frac{dy}{dx} & =\frac{1}{\ln a}\frac{d}{dx}\ln x\\ & =\frac{1}{\ln a}\frac{1}{x}.\end{align}\]
\[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\log_{a}x=\frac{1}{x\ln a},\qquad(x>0).\tag{b}}\]
Logarithmic Differentiation
The Power Rule
Show the proof
Hide the proof