In the previous section, we learned the relation between the derivative of a function and that of its inverse. Because we know the derivatives of trigonometric functions, in this section we derive the derivatives of the inverse trigonometric functions.
Recall \[(f^{-1})'(y)=\frac{1}{f'(x)}=\frac{1}{f'(f^{-1}(y))}\]
Table of Contents
Derivative of the Inverse of Sine
Recall:
\(v=\arcsin u\) means \(u=\sin v\) and \(-\dfrac{\pi}{2}\leq v\leq\dfrac{\pi}{2}\).
We can show that
\[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\arcsin x=\frac{d}{dx}\sin^{-1}x=\frac{1}{\sqrt{1-x^{2}}},\quad(-1<x<1).}\]
Derivative of the Inverse of Cosine
Recall
\(v=\arccos u=\cos^{-1}u\) means \(u=\cos v\) and \(0\leq v\leq\pi\).
We can show that
\[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\arccos x=\frac{d}{dx}\cos^{-1}x=-\frac{1}{\sqrt{1-x^{2}}},\quad(-1<x<1).}\]
Derivative of the Inverse of Tangent
Recall
\(v=\arctan u=\tan^{-1}u\) means \(u=\tan v\) and \(-\frac{\pi}{2}\leq v\leq\frac{\pi}{2}\).
We can show that
\[\bbox[#F2F2F2,5px,border:2px solid black]{\frac{d}{dx}\arctan x=\frac{d}{dx}\tan^{-1}x=\frac{1}{1+x^{2}}.}\]